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As an application of our random variational inequality proved in this paper, the
random versions of Fan's best approximation theorem for both single-valued and
set-valued mappings are given. These results, in turn, are used to derive some ran-
dom fixed point theorems for both nonself single-valued and set-valued mappings
in normed spaces. Our random fixed point theorems are closely related to, but not
comparable with results given by Engl, Lin, Reich, Seghal and Waters, Tan and
Yuan, and Xu. � 1996 Academic Press, Inc.

1. Introduction

Random fixed-point theory has received much attention in recent years,
for instance, see Bharucha-Reid [2], Bocsan [3], Chang [4], Engl [7],
Itoh [11], Kucia and Nowak [12], Lin [15], Liu and Chen [18],
Papageorgiou [19], Reich [21], Rybinski [26], Sehgal and Singh [29],
Seghal and Waters [30, 31], Tan and Yuan [33, 34] and Xu [37]. In this
paper, we consider a stochastic version of the best approximation theorem,
i.e., Theorem 2 of Fan in [8] which is stated as follows:

Let X be a nonempty compact convex subset of normed space E. For any
continuous mapping f from X to E, there exists a point u # X such that

&u&f (u)&=d( f (u); X ).

The Fan's best approximation theorem is very useful in the study of fixed
point theory in topological vector spaces, and this idea has been further
illustrated by Reich in [20]. Since then various aspects (non-stochastic
versions) of Fan's approximation theorem have been studied by Ding and

article no. 0014

172
0021-9045�96 �12.00
Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



F
ile

:6
40

J
29

15
02

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

33
56

Si
gn

s:
28

85
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Tan [6], Fan [9], Lin [14], Lin [16], Lin and Yen [17], Reich [22],
Singh and Watson [32] and Yuan [38] under different assumptions.
Recently, Sehgal and Singh [29], Seghal and Waters [30], Papageorgiou
[19], Lin [15] and Tan and Yuan [34] have studied the random version
of Fan's best approximation theorem, which is illustrated as follows:

Let X be a non-empty subset of a normed space (E, & }&), (0, 7) a
measurable space and f : Q_X � R _ [&�, +�] an extended real-valued
function. To find a single-valued measurable mapping �: 0 � X such that for
each | # 0,

& f (|, �(|))&�(|)&= inf
x # X

&x&f (|, �(|))&.

It is hoped that the random best approximation theorem will play a role
analogous to the role of the best approximation theorem of Fan in the
study of deterministic fixed point theory in topological vector spaces. Some
results have already been achieved in this line, for example, see Lin [15],
Papageorgiou [19], Sehgal and Singh [29], Seghal and Waters [30] and
Tan and Yuan [33-34]. Unfortunately, there is no literature for the study
of random best approximation theorems through the point of view of
random variational inequalities. Our objective in this paper is to study
random variational inequalities, and to derive some random best
approximation theorems which, in turn, imply random fixed point
theorems for both single and set-valued mappings.

The idea used in this paper is illustrated as follows: In order to derive
random fixed point theorems, we reduce the existence problem of random
fixed points to the existence problem of the random best approximation.
The latter can be dealt with using random variational inequalities.

We would like to point out that the method used in this paper is different
from those used by Engl [7], Lin [15], Papageorgiou [19], Reich [21],
Sehgal and Singh [29], Sehgal and Waters [30], Tan and Yuan [34] and
Xu [37] (we just mention a few names here), and our results are closely
to related to, but not comparable to, those results given by those authors.
In order to present our exposition clearly, we first study single-valued map-
pings, then the similar idea is applied for the study of set-valued mappings.

Now we introduce some notations and definitions. Let X be a non-empty
set. We denote by F (X) the family of all non-empty finite subsets of X and
by 2X the family of all non-empty subsets of X. Let X be a non-empty sub-
set of topological space E. Then (i) we denote by �EX and intEX the
boundary and relative interior of X in E respectively, which are further
simplified to �X and intX if there is no confusion; (ii) we denote by X c

E

(simply, by Xc) the complement of X in E, i.e., X c
E : =[x # E: x � X]; and

(iii) the convex hull of X in E is denoted by coX. We denote N and R the
set of all positive integer and the real line, respectively. Let X and Y be
topological spaces and F: X � 2Y be a set-valued mapping. Then (1) F is

173RANDOM APPROXIMATIONS



F
ile

:6
40

J
29

15
03

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

32
91

Si
gn

s:
27

27
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

said to be lower (resp., upper) semicontinuous if for each closed (resp.,
open) subset C of Y, the set [x # X: F(x)/C] is closed (resp., open) in X;
and (2) F is continuous if F is both lower and upper semicontinuous.
Throughout this paper the terminology map always means a mapping
which is single-valued.

A measurable space (0, 7) is a pair where 0 is a set and 7 is a _-algebra
of subsets of 0. If X is a topological space, the Borel _-algebra B(X) is the
smallest _-algebra containing all open subsets of X. If (01 , 71) and
(02 , 72) are two measurable spaces, the space (01_02 , 71 �72) denotes
the smallest _-algebra which contains all the sets of A_B, where
A # 71 , B # 72 . We note that the Borel _-algebra B(X1_X2) contains
B(X1)�B(X2) in general.

A map f : 01 � 02 is said to be (71 , 72) measurable if for each
B # 72 , f &1(B)=[x # 01 , f (x) # B] # 71 . Let X be a topological space and
F: (0, 7) � 2X be a correspondence (or say, mapping). Then (a) F is said
to be measurable (resp., weakly measurable) if F &1(B) :=
[| # 0: F(|) & B{<] # 7 for each closed (resp., open) subset B of X; (b)
the graph of F is said to be measurable if the set GraphF :=
[(|, y) # 0_X: y # F(|)] # 7�B(X) and (c) a (single-valued) map
f : 0 � X is said to be a measurable selection of F provided that f is
measurable with f (|) # F(|) for all | # 0.

Let (X1 , 71), (X2 , 72) be measurable spaces, Y a topological space.
Then a mapping F: X1_X2 � 2Y is said to be jointly measurable (resp.,
jointly weakly measurable) if for every closed (resp., open) subset B of Y,
F &1(B) # 71 �71 . If X is a topological space, then it is understood that 7
is the Borel _-algebra B(X).

Let X and Y be two topological spaces, (0, 7) a measurable space and
F: 0_X � 2Y a mapping. Then (i) F is a random mapping if for each fixed
x # X, the mapping F( } , x): 0 � 2Y is measurable; (ii) F is randomly
continuous if for each fixed | # 0, F(|, } ): X � 2Y is continuous and for
each fixed x # X, F( } , x): 0 � 2Y is measurable.

A topological space X is (i) a Polish space if X is separable and
metrizable under a complete metric; (ii) a Suslin space if X is a Hausdorff
topological space and the continuous image of a Polish space. A Suslin
(resp., Polish) subset in a topological space is a subset which is a Suslin
(resp., Polish) space. The Suslin set plays very important roles in
measurable selection theory (for details, see [1], [3], [19], [36]). We
note that if X1 and X2 are Suslin spaces, then B(X1_X2)=
B(X1)�B(X2)(e.g., see [27, p. 113]).

Denote by + and & the sets of infinite and finite sequences of positive
integers respectively, let ! be a family of sets and F: & � ! be a map. For
each _=(_i)

�
i=1 # + and n # N, we shall denote (_1 , ..., _n) by _�n. Then

�_ # + ��
n=1 F(_�n) is said to be obtained from ! by the Suslin operation.
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Now if every set obtained from ! in this way is also in !, then ! is called
a Suslin family. Note that, if + is an outer measure on a measurable space
(7, 0), then 7 is a Suslin family (see [28, p. 50]). In particular, if (0, 7)
is a complete measurable space, then 7 is a Suslin family.

Let (0, 7) be a measurable space, X be a topological space and
F: 0_X � 2X be a mapping. Then a (single-valued) map ,: 0 � X is said
to be a random fixed point of F if , is a measurable map and
,(|) # F(|, ,(|)) for all | # 0. It should be noted that some authors
defined a random fixed point of F to be a single-valued measurable
mapping , such that ,(|) # F(|, ,(|)) for almost every | # 0, e.g., see
[19] and [26]. We also remark that if F: 0_X � 2X has a random fixed
point, then for each fixed | # 0, F(|, } ) has a fixed point in X. However
the converse is not true in general (e.g., see examples in [31] and [33]).

We first need the following measurable selection Theorem which is a
corollary of Theorem 7 in [13]:

Theorem A. Let (0, 7) be a measurable space with 7 a Suslin family
and X a Suslin space. Suppose F: (0, 7) � 2X is a mapping with
GraphF # 7�B(X). Then F has a measurable family [gi (|)]�

i=1 of selec-
tions such that for each | # 0, the set [gi (|)]�

i=1 is dense in F (|). In
particular, F has a measurable selection.

Let X be a non-empty subset of E and f: 0_X_X � � [&�, +�] be
a function, where (0, 7) is a measurable space. Then a measurable (single-
valued) map g: 0 � X is said to be a random variational solution for the
random variational problem f provided that supy # X f (|, g(|), y)�0 for all
| # 0. It is clear that if f has a random variational solution, then for each
fixed | # 0, the operator f (|, } , } ) has at least one variational solution. The
following example illustrates the converse does not hold if the function F
lacks the measurable property.

Example. Let 0=X=[0, 1], 7 be the _-algebra of Lebesgue
measurable subsets of [0,1] and A be a non-Lebesgue measurable subset
of [0,1] (for the existence, see Royden [25, p. 63]). Define
f : 0_X_X � R _ [&�, +�] by

f (|, x, y )={(x&1) } y,
x } y,

if (|, x, y) # A_X_X;
otherwise.

Then for each fixed | # 0, f (|, } , } ) has a unique variational solution
�: 0 � R defined by

�(|)={[1],
[0],

if | # A;
otherwise.
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F
ile

:6
40

J
29

15
05

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

25
87

Si
gn

s:
16

46
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

However, f does not have any random variational solution as � is not
measurable.

2. A Random Variational Inequality and Best Approximations

In this section, we first prove the existence of random variational solu-
tions for the function f which has certain measurable properties. This
random variational inequality is then applied to give the random
approximation theorems for both single and set-valued mappings in nor-
med spaces, which correspond to the deterministic results given by Fan in
[9] and [8] and Reich in [20].

Theorem 2.1. Let (0, 7) be a measurable space with 7 a Suslin family
and X a nonempty convex Suslin subset of a topological vector space E.
Suppose f: 0_X_X � R _ [&�, +�] is such that

(a) for each fixed (|, y) # 0_X, x � f (|, x, y) is lower semicon-
tinuous in each nonempty compact subset C of X;

(b) for each fixed (|, x) # 0_X, y � f (|, x, y) is lower semicon-
tinuous in X;

(c) for each fixed | # 0, for any A # F(X ) and x # co(A),
infy # A f (|, x, y)�0;

(d) there exist a non-empty compact subset K of X and a non-empty
convex compact subset X0 of X such that for each x # X"K, there exists
y # co(X0 _ [x]) with f (|, x, y)>0 for all | # 0;

(e) for each fixed y # X, the function fy : 0_X � R _ [&�, +�]
defined by fy(|, x) :=f (|, x, y) for each (|, x) # 0_X is jointly measurable.

Then there exists a countable measurable family [gi]�
i=1 from 0 to K

such that for each gi ,

sup
y # X

f (|, gi (|), y)�0

for all | # 0.

Proof. Define ,: 0 � 2K by

,(|) :=[x # K: sup
y # X

f (|, x, y)�0]

for each | # 0. Then for each fixed | # 0, our conditions (a)�(d) imply
that the function f (|, } , } ) satisfies all hypotheses of Theorem 1 of Ding and
Tan in [5]. By Theorem 1 of [5], ,(|) is a non-empty and closed subset

176 YUAN, LUO, AND LI
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of K. Let B be a countable dense subset of X, where X is a Suslin set. From
the lower semicontinuity of y [ f (|, x, y) for each fixed (|, x) # 0_X, we
have,

,(|)=[x # K: sup
y # X

f (|, x, y)�0]

= ,
y # X

[x # X: f (|, x, y)�0]

= ,
yi # B

,i (|),

where ,i (|) :=[x # X : f (|, x, yi)�0]. From the condition (e), Graph ,i=
f &1

y i
((&�, 0]) # 7�B(X ). Therefore Graph , # 7�B(X ). Now by

measurable selection Theorem A, there exists a countable measurable
family [gi]�

i=1 from 0 to K such that [gi (|): i=1, ..., ]=,(|) for each
| # 0. Thus for each gi ,

sup
y # X

f (|, gi (|), y)�0

for all | # 0 and the conclusion follows. K

Let X and Y be non-empty subsets of a normed space (E, & }&). For each
point u # E, we denote by d(u, X) :=infx # X &u&x& the distance between u
and X, and d(A, B): =infx # Ad(x, B) the distance between A and B.

As an application of Theorem 2.1, we have the following stochastic
approximation result which corresponds to the well-known best approxima-
tion theorem of Fan in [8] (see also Fan [9], Reich [20] and Yuan [38]):

Theorem 2.2. Let (0, 7) be a measurable space with 7 a Suslin family
and X a non-empty convex Suslin subset of a normed space (E, & }&). Suppose
�: 0_X � E is a randomly continuous map, and moreover there exist a
non-empty convex compact subset X0 of X and a non-empty compact subset
K of X such that for each y # X"K, there exists x # X0 with &x&�(|, y)&<
&y&�(|, y)& for all | # 0. Then there is a countable measurable family
[gi]�

i=1 from 0 to K such that for each gi ,

&gi (|)&�(|, gi (|))&=d(X, �(|, gi (|)))

for all | # 0.

Proof. Define a function f : 0_X_X � R _ [&�, +�] by

f (|, x, y) :=&x&�(|, x)&&&y&�(|, x)&

for each (|, x, y) # 0_X_X. Then f satisfies all hypotheses of Theorem
2.1. By Theorem 2.1, there exists a countable measurable family [gi]�

i=1

177RANDOM APPROXIMATIONS
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from 0 to K such that for each gi and | # 0, &gi (|)&�(|, gi (|))&=
infx # X &x&�(|, gi (|))& and the proof is complete. K

Remark 1. Theorem 2.2 is closely related to, but not comparable to,
Theorem 1 of Lin [15], Theorem 1 of Sehgal and Waters [31].

As an immediate application of Theorem 2.2, we have the following
random best approximation in the compact setting:

Corollary 2.3. Let (0, 7) be a measurable space with 7 a Suslin
family and X a non-empty convex Suslin set in a normed space (E, & }&).
Suppose �: 0_X � E is a randomly continuous map. Then there is a coun-
table measurable family [gi]�

i=1 from 0 to X such that for each gi ,

&gi (|)&�(|, gi (|))&=d(X, �(|, gi (|)))

for all | # 0.

Proof. Note that X is non-empty convex compact so that X is Suslin.
Therefore the conditions of Theorem 2.2 are satisfied automatically and the
conclusion of follows. K

As another application of Theorem 2.1, we have the following stochastic
approximation theorem for set-valued mappings:

Theorem 2.4. Let (0, 7) be a measurable space with 7 a Suslin family
and X a non-empty convex Suslin subset of a normed space (E, & }&). Suppose
�: 0_X � 2E is randomly continuous mapping with non-empty compact and
convex values. Moreover suppose there exist a non-empty convex compact
subset X0 of X and a non-empty compact subset K of X such that for each
y # X"K, there exists x # X0 with infu # �(|, y) &x&u&<infu # �(|, y) &y&u& for
all | # 0.

Then there is a countable measurable family [gi]�
i=1 from 0 to K such

that for each gi ,

inf
u # �(|, gi (|))

&gi (|)&u&=d(X, �(|, gi (|)))

for all | # 0.

Proof. Following the argument similar to that used in the proof of
Theorem 2.2, we define f : 0_X_X � R _ [&�, +�] by

f (|, x, y)= inf
z # �(|, x)

&z&x&& inf
z # �(|, x)

&z&y&.

for each (|, x, y) # 0_X_X. Note that �(0, x) is non-empty compact, the
mapping (|, x, y) [ f (|, x, y) is randomly continuous by Lemma 3 of
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Sehgal and Singh [29]. Now we show that the function f satisfies all condi-
tions of Theorem 2.1. Fixing each | # 0. For each A # F(X) and each
x # co(A), we must have miny # A f (|, x, y)�0. Otherwise there exist A :=
[ yi , ..., yn] # F(X ) and x=�n

i=1 *i yi # co(A) with *i , ..., *n�0 and �n
i=1*i

such that f (|, x, yi)>0 for all i=1, ..., n. Since �(|, x) is compact, there
exists zi # �(|, x) such that &zi&yi&=infz # �(|, x) &z&yi& for i=1, 2, ..., n,
i.e.,

f (|, x, yi)= inf
z # �(|, x)

&z&x&& inf
z # �(|, x)

&z&yi&

= inf
z # �(|, x)

&z&x&&&zi&yi&

for each i=1, ..., n. Let z0=�n
i=1 *i zi , then z0 # �(|, x) as F(|, x) is

convex. It follows that

0<f (|, x, yi)= inf
z # �(|, x)

&z&x&& inf
z # �(|, x)

&z&yi&

�&z0&x&& inf
z # �(|, x)

&&yi&

� :
n

i=1

*i &zi&yi&& inf
z # �(|, x)

&z&yi &=0,

which is impossible. Thus f satisfies all conditions of Theorem 2.1. By
Theorem 2.1, there exists a countable measurable maps [gi]i # N from 0 to
K such that each gi , we have supy # X f (|, �i (|), y)�0 for all | # 0.
Hence

d(�(|, gi (|)), gi (|))=d(�(|, gi (|)), X)

for all | # 0 and we complete the proof. K

For other kinds of random approximations and their applications to the
study of random fixed points, the interested reader is referred to Lin [15],
Sehgal and Singh [29], and Tan and Yuan [34]. In addition, some
applications of random variational inequalities to stochastic partial
differential equations have also been given by Tan, Tarafdar and Yuan in
[35].

3. Random Fixed Point Theorems for

Nonself Single-Valued Mappings

In this section, we discuss several applications of the random best
approximation theorems in Section 2, and give some random fixed point
Theorems for single-valued mappings.
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Theorem 3.1. Let (0, 7) be a measurable space with 7 a Suslin family
and X a non-empty Suslin convex subset of a normed space (E, & }&). Suppose
that �: 0_X � E is a randomly continuous mapping such that:

(a) there exist a non-empty convex compact subset X0 of X and a
non-empty compact subset K of X such that for each y # X"K, there exists
x # X0 with &x&�(|, y)&<&y&�(|, y& for all | # 0; and

(b) the function � satisfies one of the following conditions:

(i) for each fixed | # 0, each x # K with x{�(|, x), there exists
y # Ix(x) :=[x+c(z&x), for some z # X, some c>0] such that
&y&�(|, x)&<&x&�(|, x)&.

(ii) � is weakly inward (i.e., for each | # 0, �(|, x) # IX (x) for
x # K).

Then � has a random fixed point.

Proof. By Theorem 2.2, there exists a countable measurable family
[gi]�

i=1 from 0 to 2K such that for each gi ,

&gi (|)&�(|, gi (|))&=d(�(|, gi (|)), X)

for all | # 0.
We shall prove that each gi is a random fixed point of �. Let � satisfies

(i). If there exists some | # 0 such that gi (|){�(|, gi (|)), then from the
assumption (i), there exists y # Ix(gi (|)) such that

&y&�(|, gi (|))&<&gi (|)&�(|, gi (|))&.

Since y # IX (gi (|)), there exist z # X, c>0 such that y=gi (|)+
c(z&gi (|)), hence y � X; otherwise we would have a contradiction to the
choice of gi (|). Without loss of generality, we assume c>1. Then
z=y�c+(1&1�c) gi (|)=(1&;) y+;gi (|), where ;=1&1�c, and
0<;<1. Hence,

&z&�(|, gi (|))&�(1&;) &y&�(|, gi (|))&+; &gi (|)&�(|, gi (|))&

<(1&;) &gi (|)&�(|, gi (|))&

+; &gi (|)&�(|, gi (|))&

=&gi (|)&�(|, gi (|))&.

This contradicts the choice of gi (|). Therefore �(|, gi (|))=gi (|)) for
each | # 0, so that gi is a random fixed point.

If � satisfies the condition (ii), for each | # 0 and each x # K with
x{�(|, x), since �(|, x) # IX (x), there exists y # IX (x) such that
&y&�(|, x)&<&x&�(|, x)&, thus � satisfies (i). Therefore each gi is a
random fixed point of �. K
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Theorem 3.1 is closely related to, but not comparable to, Theorem 4 of
Lin [15], Theorem 4.1 of Tan and Yuan [34] and Theorem 2 of Xu [37].

By Theorem 3.1 we also have the following:

Corollary 3.2. Let (0, 7) be a measurable space with 7 a Suslin
family and X a non-empty Suslin convex subset of a normed space (E, & }&).
Suppose that �: 0_X � E is a randomly continuous mapping. Suppose there
exist a non-empty compact convex subset X0 of X and a non-empty compact
subset K of X such that for each y # X"K, there exists x # X0 such that
&x&�(|, y)&<&y&�(|, y)& for all | # 0, and moreover � satisfies
f (|, �K)/X for each | # 0. Then � has a random fixed point.

Proof. Since �(|, �(K))/X for each | # 0 then � satisfies the con-
dition (ii) of Theorem 3.1, because K/X/IX (x), IK (x)/IX (x) and
IK (x)=E if x # intK, where �K, intK denote the boundary and interior of
K in X, respectively. Thus the conclusion follows from Theorem 3.1. K

Remark 2. Corollary 3.2 is also closely related to, but not comparable
to, the Corollary 1 of Lin [15] and Theorem 3 of Sehgal�Waters [30].

4. Random Fixed Point Theorems for Nonself Set-Valued Mappings

In the final section of this paper, we study some random fixed point
theorems for set-valued mappings as applications of Theorem 2.4 in
Section 2.

Theorem 4.1. Let (0, 7) be a measurable space with 7 a Suslin family
and X a nonempty Suslin convex subset of a normed space (E, & } &). Suppose
that �: 0_X � 2E is a randomly continuous mapping with non-empty
compact and convex values such that:

(a) there exist a non-empty convex compact subset X0 of X and a
non-empty compact subset K of X such that for each y # X"K, there exists
x # X0 with infu # �(|, y) &x&u&<infu # �(|, y) &&u& for each | # 0; and

(b) � satisfie one of the following conditions:

(i) for each fixed | # 0, each x # K with x{�(|, x), there exists
y # IX (x) :=[x+c(z&x), for some z # X, some c>0] such that

inf
u # �(|, x)

&y&u&< inf
u # �(|, x)

&x&u&.

(ii) � is weakly inward (i.e., for each | # 0, �(|, x) & IX (x){<
for each x # K ).

Then � has a random fixed point.
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Proof. By Theorem 2.4, there exists a countable measurable family
[gi]�

i=1 from 0 to K such that for each gi ,

inf
u # �(|, g i(|))

&gi (|)&u&=d(�(|, gi (|)), X)

for all | # 0. Now following the argument of Theorem 3.2, we shall prove
that each gi is a random fixed point of �.

Let � satisfies (i). If there exists some | # 0 such that
gi (|) � �(|, gi (|)), then from assumption (i), there exists y # IX (gi (|))
such that

inf
u # �(|, g i (|))

&y&u&< inf
u # �(|, g i (|))

&gi (|)&u&.

Note that y # IX (gi (|)), so there exist z # X, c>0 such that y=
gi (|)+c(z&gi (|)), hence y � X; otherwise a contradiction to the choice
of gi (|) would result. Without loss of generality, we assume that c>1.
Then z :=y�c+(1&1�c) gi (|)=(1&;) y+;gi (|), where ;=1&1�c,
and 0<;<1. Let w # �(|, gi (|)) such that &gi (|)&w&=
infu # �(|, gi (|)) &gi (|)&u&=d(�(|, gi (|)), X ). Then we have,

&z&w&�(1&;) &y&w&+; &gi (|)&w&

<(1&;) &gi (|)&w&+; &gi (|)&w&

=&gi (|)&w&= inf
u # �(|, gi (|))

&gi (|)&u&

=d(�(|, gi (|)), X ).

This contradicts the choice of gi (|). Therefore gi (|) # �(|, gi (|)) for each
| # 0, i.e., gi is a random fixed point of �.

If � satisfies (ii), for each | # 0 and each x # K with x{�(|, x), there
must exist y # IX (x) such that infu # �(|, x) &y&u&<infu # �(|, x) &x&u& as
�(|, x) & IX (x){< and � is randomly continuous.

Thus, it satisfies the assumption (i). Therefore each gi is a random fixed
point of �. K

Remark 3. The condition (ii) of Theorem 4.1 was also used by Reich in
[21] in the discussing of the existence of random fixed point for non-self
randomly continuous condensing mappings.

By the argument similar to that used in the proof of Corollary 3.2, we
have the following random fixed point theorem:

Corollary 4.2. Let (0, 7) be a measurable space with 7 a Suslin
family and X a nonempty Suslin convex subset of a normed space (E, & }&)
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Suppose that �: 0_X � 2E is a random continuous mapping with non-empty
compact and convex values. If there exist a non-empty compact convex subset
X0 of X and a non-empty compact subset K of X such that

(a) for each y # X"K, there exists x # X0 such that
infu # �(|, y) &x&u&<infu # �(|, y) &y&u& for all | # 0; and

(b) � satisfies �(|, �K) & X� {< for all | # 0.

Then � has a random fixed point.

Proof. Since �(|, �K) & X� {< for all | # 0, then � satisfies the condi-
tion (ii) of Theorem 4.1 by the facts that:

(i) K/X/IX (x), IK (x)/IX (x); and

(ii) IK (x)=E if x # intK, where �K, intK denote the boundary and
interior of K in X, respectively.

Therefore for each x # K, �(|, x) & IX (x){< for all | # 0. Then the
conclusion follows from Theorem 4.1. K

Remark 4. For the measurable space (0, 7) which has a _-finite
measure, Engl in [7, Theorem 7] gave a stochastic version of the Bohnen-
blust-Karlin-Kakutani fixed point with the stochastic domain. However his
result requires implicitly that the domain X has non-empty interior in a
separably Banach space. Moreover, by assuming that the measurable space
(0, 7) is complete, Reich in [21] proved a random fixed point for non-self
random upper semicontinuous condensing mappings when the underlying
space (E, & }&) is a Frechet space. Note that all complete measurable spaces
and measurable spaces with _-finite measure have the Suslin family, but the
converse is not true in general (e.g., see Rogers [24]), and each closed
separable set in a Banach space is a Suslin subset, and the condensing map-
ping may not satisfy the non-compact condition (ii) of Theorem 4.1. Hence
our Theorem 4.1 is independent from those results given by Engl in [7]
and Reich in [21]. Furthermore, we note that Theorem 4.1 also generalizes
corresponding results of Theorem 2.6 of Tan and Yuan in [33].

So far we have given several random fixed point theorems for set-valued
mappings as applications of random variational inequalities. In what
follows, we shall consider some random fixed points for random upper
semicontinuous mappings which have measurable graphs.

Let X be a topological space with topology T. We shall use (X, T) and
2(X, T ) to denote spaces X and 2X respectively with emphasis on the fact
that X is equipped with the topology T. Let (E, T ) be a topological vector
space. For each non-empty subset A of E and for each continuous semi-
norm p on (E, T), let dp(x, A) :=infa # A [ p(x&a)]. We shall denote by
W :=W(E, E*) the weak topology of E. Let X be a non-empty of (E, T ).

183RANDOM APPROXIMATIONS



F
ile

:6
40

J
29

15
13

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

28
56

Si
gn

s:
19

68
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

For each x # X, the inward set and outward set of X at x, denoted by IX (x)
and OX (x) respectively, are defined by

IX (x) :=[x+r( y&x): y # X and r>0],

OX (x) :=[x&r( y&x): y # X and r>0].

The closures of IX (x) and OX (x) in (E, T ), denoted by IX (x) and OX (x)
respectively, are called the weakly inward and the weakly outward set of X.

As a simple application of Theorem 2.3 of Tan and Yuan [33], we have
the following random fixed point theorems for non-self upper semicon-
tinuous mappings with measurable graphs in locally convex spaces. These
results also improve corresponding results of Theorem 2.6 of Tan and
Yuan [33] in several aspects.

Theorem 4.3. Let (0, 7) be a measurable space with 7 a Suslin family.
Let (E, T ) a locally convex Hausdorff topological vector space, X a
non-empty Suslin, W-compact convex subset of E and F: 0_(X, W) � 2(E, T )

be random upper semicontinuous with non-empty T-compact convex values
and Graph F # 7�B((X, W)_(E, T )). For each fixed (|, x) # 0_X, if
each weakly continuous semi-norm p on E with dp(x, F(|, x))>0, we have
for any u # F(|, x),

dp(u, IX (x)))<p(x&u) (resp., dp(u, OX (x)))<p(x&u).

Then F has a random fixed point.

Proof. For each fixed | # 0, the mapping F(|, } ): (X, W) � 2(E, T )

satisfies all hypotheses of Theorem 5 of Ding and Tan [6, p. 795]. Hence
F(|, } ) has a fixed point in (X, T ). Then the conclusion follows by
Theorem 2.3 of Tan and Yuan [33]. K

Theorem 4.3 is a random version of Theorem 5 of Ding and Tan [6]
which in turn improves Theorem 2 of Reich [23]. From the proof of
Theorem 4.3 and by combining Theorem 6 of Ding and Tan [6], we have
the following:

Theorem 4.4. Let (0, 7) be a measurable space with 7 a Suslin
family. Let (E, T) be a locally convex Hausdorff topological vector space,
X be a non-empty Suslin, W-compact convex subset of E, and
F: 0_(X, W) � 2(E, T ) be random upper semicontinuous with non-empty
T-compact convex values and Graph F # 7� ((X, W)_(E, T)). Suppose that
for each fixed | # 0, x # �(E, W) X"F(|, x) and for each u # F(|, x), there
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exists a number * (real or complex, depending on whether the vector space
E is real or complex) with |*|<1 such that

*x+(1&*)u # IX (x) (respectively *x+(1&*)u # OX (x)),

here �(E, W) X denotes the boundary of X in the topological space (E, W).

Then F has a random fixed point.

Proof. For each fixed | # 0 the mapping F(|, } ): (X, W) � 2(E, T )

satisfies all hypotheses of Theorem 6 of Ding and Tan [6, p. 795]. Hence
F(|, } ) has a fixed point in (X, T ). Then the conclusion follows by
Theorem 2.3 of Tan and Yuan [33]. K

Theorem 4.4 is a random version of Theorem 6 of Ding and Tan [6]
which in turn improves Theorem 3.1 of Reich [22] and Theorem 3 of Fan
[8].

Remark 5. Let (0, 7) be a measurable space and X and Y be topologi-
cal spaces. Let F: 0_X � 2Y be a random continuous mapping with non-
empty closed values. When X and Y are both separable metric spaces, it is
clear that F has a measurable graph by Lemma 2.4 in [33]. In this case,
Corollary 4.2 can be derived by Theorem 4.3 or Theorem 4.4. However
neither X nor Y is a separable metric space, we can not prove that the ran-
domly continuous mapping F with non-empty closed values has a
measurable graph (for more details, see Himmelberg [10], Kucia and
Nowak [12], Wanger [36] and reference therein). Therefore both
Theorems 4.3 and 4.4 can not include Corollary 4.2 (so that theorem 4.1)
as a special case if the Suslin space X is not metrizable.
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